search
person
Draw the structure and state applications of: i) Ferrite loop (rod) antenna ii) Horn antenna

1 Answer

Horn antenna:

Application:-

i) Used at microwave frequency.

ii) Used in satellite tracking. 

image

Ferrite loop antenna:

Application:-

In Am radio receiver to receive MW and SW band signals.

In FM radio receiver

image

thumb_up_alt 0 like thumb_down_alt 0 dislike

Related questions

Description : Draw radiation pattern for following antenna i) Yagi-Uda antenna ii) Loop antenna iii) Dish antenna iv) Horn antenna

Answer : Type of antenna Radiation Patteren  Yagi-Uda antenna Loop antenna Dish antenna Horn antenna 

Description : Draw the structure of horn antenna and its radiation pattern. List its any two applications.

Answer : The structure of horn antenna Radiation pattern of Horn Antenna Application:- i) Used at microwave frequency. ii) Used in satellite tracking 

Description : Explain loop antenna with neat sketch. Draw radiation pattern. State its advantages and applications.

Answer : Loop antenna:-The single turn coil carrying RF current through it having length less than the wavelength.   Advantages:- 1. highly directive 2. Small size Applications:- 1. For direction finding 2. In portable receivers 3. In navigation 

Description : Write one application of following antenna i. Rectangular antenna ii. Dish antenna iii. Yagi-Uda antenna iv. Horn antenna 

Answer : i. Rectangular antenna is used in direction finding in portable recievers. ii. Dish antenna is used to transmit and receive signal from satellite. iii. Yagi-Uda antenna is used in HF and VHF range as a TV receiving antenna. iv. Horn antenna is used in satellite tracking.

Description : Draw the radiation pattern for Dipole antenna: (i) Half wave dipole (ii) Folded dipole.

Answer : The radiation pattern for Half wave dipole antenna The radiation pattern for Folded dipole antenna.

Description : Define the following terms related to antennas; (i) Antenna resistance (ii) Directivity (iii) Antenna gain (iv) Power density

Answer : Antenna Resistance - The resistance of an antenna has two components: 1. Its radiation resistance due to conversion of power into electromagnetic waves 2. The resistance due to actual losses in the ... the transmitter power divided by the surface area of a sphere (4πR2) at that distance.

Description : Describe with respect to antenna (i) radiation pattern (ii) directive gain (iii) power gam (iv) polarization

Answer : (i) Radiation pattern:-A graph or diagram which tells us about the manner in which an antenna radiates more power in different directions is known as the radiation patteren of antenna.  ( ... as the direction of the electric vector in the electromagnetic wave radiated by the transmitting antenna. 

Description : Define the following terms: (i) Polarization (ii) Antenna gain (iii)Antenna resistance (iv)Directivity

Answer : i) Polarization:- It is defined as the direction of electric field vector in the EM wave radiated by the transmitting antenna. ii) Antenna Gain:- Antenna gain is defined as the ratio of ... in only one direction in which the radiation is maximum. That is directivity = Max. directive gain

Description : A telephone cable has following primary constants per loop kilometer ,R=30Ω, L=20mH,C=0.06µF,G=0.If the applied signal has an angular frequency of 5000 rad/sec.., Determine (i) Characteristics impedence (ii) Attenuation constant

Answer : A telephone cable has following primary constants per loop kilometer ,R=30Ω, L=20mH,C=0.06µF,G=0.If the applied signal has an angular frequency of 5000 rad/sec.., Determine (i) Characteristics impedence (ii) Attenuation constant

Description : Dish antenna is parabolic in shape and has meshy structure. Give reasons.

Answer : A Practical reflector employing the properties of the parabola will be a three dimensional bowl-shaped surface, obtained by revolving the parabola about the axis AB. The resulting geometric ... (directrix) is constant. These geometric properties yield an excellent microwave or light reflector. 

Description : Draw construction of Yagi-Uda antenna and explain.

Answer : Explanation A Yagi-Uda antenna, commonly known as a Yagi antenna, is a directional antenna consisting of multiple parallel elements in a line, usually half-wave dipoles made of ... receiver with a transmission line and additional parasitic elements called reflector and one or more directors.

Description : In a FM system, the maximum deviation is 75KHz. Find bandwidth for modulating frequency i. fm=500Hz ii. fm=5KHz iii. fm=10KHz Draw conclusion for bandwidth of FM from answer.

Answer : Given deviation∆=75kHz i) fm=500Hz bandwidth B.W=2(∆+fm)  =2(75k+500)=151kHz  ii). fm=5KHz bandwidth B.W=2(∆+fm)  =2(75k+5k)=160KHz iii) fm=10KHz bandwidth B.W=2(∆+fm)  =2(75k+10k)=170KHz As the modulating frequency increases bandwidth also increases.

Description : Draw Yagiuda antenna with its radiation pattern.

Answer : Construction of Yagi-Uda Antenna Radiation Pattern of Yagi-Uda Antenna

Description : Write the application of the following antennas: 1) Rectangular antenna 2) Dish antenna 3) Horn antenna 4) Loop antenna 5) Yagi-Uda antenna. 

Answer : Applications:  1.Rectangular antenna  i)Used in Mobile and satellite communication ii)Used in Global Positioning System iii) Used for Radio Frequency Identification (RFID) iv) Radar  Dish ... antenna. 2. Yagi-Uda antenna is used in conditional Access System (CAS) at the decryptor.

Description : Draw the symbol of i) Iron core inductor ii) variable capacitor iii) resistor iv) Ferrite core inductor

Answer :  Iron core inductor:  Ferrite core inductor:  

Description : State Magneto-striction. Draw Hysteresis loop for : (i) High silicon steel (ii) Copper (iii) Soft iron (iv) Wood

Answer : Magneto-striction: It is the change in dimensions of ferro magnetic material when it is magnetized for eg. Silicon steel, iron or any ferromagnetic material.  i) Hysteresis loop for High silicon steel :  ... loop for Soft iron :  iv) Hysteresis loop for Copper and Wood : 

Description : Compare PAM, PWM, and PPM on the basis of i. Variable characteristics ii. Bandwidth iii. Information contained in iv. Transmitted power

Answer : Compare PAM, PWM, and PPM on the basis of i. Variable characteristics ii. Bandwidth iii. Information contained in iv. Transmitted power

Description : a) For a transmission line, Find SWR and reflection coefficient R if, i. There is no reflected voltage. ii. Reflected voltage and incident voltage is equal. iii. If reflected voltage=20V and incident voltage=10V. iv. If reflected voltage=10V and incident voltage =20V.

Answer : reflection coefficient R=Vr/Vi i. There is no reflected voltage. i.e,Vr=0 R=0 SWR= 1+R/1-R=1 ii. Reflected voltage and incident voltage is equal. Vr=Vi; R=1 SWR= 1+R/1-R=1+1/1-1=infinity iii. If reflected ... and incident voltage =20V. Vr=10 and Vi=20 R=10/20=0.5 SWR= 1+R/1-R=1+.5/1-.5=3 

Description : Differentiate between AM and FM on the basis of: (i) Definition (ii) Bandwidth (iii) Modulation Index (iv) Application

Answer : Compare AM and FM on the basis of i)Definition ii)Bandwidth iii) Wave propogation iv)Number of sidebands

Description : Compare ground wave and space wave propagation on the basis of: (i) Frequency range (ii) Method of propagation.

Answer : Compare ground wave and space wave propagation on the basis of: (i) Frequency range (ii) Method of propagation.

Description : For AM, fc =500kHz , fm = 5 kHz Determine: (i) Upper and lower sideband frequencies (ii) Bandwidth

Answer : Given data fc = 500KHz , fm = 5KHz USB =fc+fm USB = 500+5  =505 KHz. LSB =fc – fm LSB = 500 – 5  =495 KHz Bandwidth = 2fm .  = 2* 5 =10 KHz

Description : For a transmission line, the incident voltage. Ei = 6V and Er =2V ,Calculate: (i) Reflection Coefficient (ii) SWR

Answer : Reflection Coefficient(K) = Er / Ei  = 2V / 6V  K = 0.333 SWR = 1+K / 1- K  = 1+0.333 / 1-0.333  = 1.333 / 0.667 SWR= 1.998

Description : Define: (i) Image frequency and (ii) Double spotting

Answer : i)Image frequency:- Image Frequency is defined as the signal frequency plus twice the intermediate frequency. It is denoted as fsi = fs+2fi Where, fs = Signal Frequency fi =intermediate frequency ... It is due to the poor front end selectivity i.e., inadequate image frequency rejection.

Description : Define and explain the term beam width related to antenna with a sketch.

Answer : Definition: The beam width of an antenna is described as the angles created by comparing the half power point (3dB) on the main radiation lobe to its maximum power point. As an example the beam width ... max voltage at center of lobe (these point are known as half power points.) Sketch-  

Description : Explain how modulation reduces height of antenna and avoid mixing of signals.

Answer : Modulation reduces antenna height: For the transmission of radio signals, the antenna height must be multiple of λ/4 ,where λ is the wavelength . λ = c /f where c : is the ... will occupy different slots in the frequency domain (different channels). Thus, modulation avoids mixing of signals.

Description : An antenna has a radiation resistance of 72 Ω a loss resistance of 8 Ω and a power gain of 16. Find efficiency and directivity.

Answer : An antenna has a radiation resistance of 72 Ω a loss resistance of 8 Ω and a power gain of 16. Find efficiency and directivity.

Description : A superheterodyne radio receiver with an IF of 455KHZ is turned to 1000KHZ. Find: (i) Image frequency (ii) Local oscillator frequency

Answer : Given Intermediate Frequency fi=455KHz Signal frequency =fs=1000KHz Local oscillator frequency fo=fs+fi  Fo=1000KHz+455KHz  =1455KHz Image frequency is the input frequency which produces the same intermediate frequency fsi=fs+2fi  =1000KHz+2*455KHz  =1910KHz 

Description : Explain the following characteristics of AM radio receiver: (i) Sensitivity (ii) Selectivity.

Answer : Sensitivity:- The ability to amplify the weak signals is called sensitivity. It is the function of overall receiver gain. Sensitivity of radio receiver is decided by the gain of the RF IF ... perfectly the receiver is able to select the desired carrier frequency and reject other frequencies. 

Description : Explain half dipole antenna ( Resonant antenna ) with its radiation patteren. 

Answer : Half wave dipole antenna Explanation:  1. It is a resonant antenna 2. It is exact half wavelength (λ /2) long & open circuited at one end. 3. The dipole antennas have ... pattern is bidirectional.  The radiation pattern of half wave dipole antenna is - The radiation pattern

Description : Draw block diagram of basic electronic communication system and state the function of each block.

Answer : i) Input signal: - The information can be in the form of sound, picture or data coming from computer. ii) Input transducer: - it converts original information into equivalent electrical ... back to suitable form. vii) Output transducer: - It converts electrical signal into original form. 

Description : (i) state any two applications of I. C. Engine (ii) Draw a neat sketch of Two stroke petrol engine.

Answer : Applications of I.C engine 1) In Automotive - i) Two stroke engine - Mopeds, Scooters. ii) Four stroke engine - Light vehicles, Heavy vehicles. 2) Marine Application - Ships, Boat 3) Locomotive s - ... handling system  (ii) Draw a neat sketch of Two stroke petrol engine. OR

Description : Define pre-emphasis. State its need. Draw the circuit of pre-emphasis.

Answer : Definition- The artificial boosting of higher modulating frequencies to reduce the effect of noise is called as pre-emphasis. Need:- The artificial boosting of higher audio modulating ... by increasing the amplitude of modulating signal at higher frequencies. Circuit diagram 

Description : Draw the circuit diagram of PWM using IC555. State its operation.

Answer : Operation: i. The timer IC555 is operated in monostable mode. ii. The negative going carrier pulses are to the differentiator formed by R1 & C1. The differentiator produces sharp negative ... . Thus PWM signal is generated at the output pin (3) of IC555 as monostablemultivibrator. 

Description : State the functions and materials of following engine components: (i) Piston (ii) Connecting rod (iii)Crank shaft (iv)Exhaust manifold

Answer : Engine components Material Functions Piston Cat aluminum alloy To transmit the force of explosion to the crankshaft. To form seal so that the high pressure gases in ... atmosphere through the exhaust pipe after combustion stroke is completed. To keep back pressure minimum.

Description : State the function of following components of a nuclear power station: i) Moderator ii) Shielding iii) Control rod iv) Coolant 

Answer : i) Function of Moderator :- Moderator is to moderate or reduce the speed of fast neutron to help the fission process.  ii) Function of sheilding : Shielding is to protect environment, ... from reactor core and transfer it in heat exchanger for producing steam at high pressure and temperature. 

Description : Explain any four different frequency bands and give their two applications of each.

Answer : Explain any four different frequency bands and give their two applications of each.

Description : Draw practical set-up and explain the procedure to measure selectivity of radio receiver.

Answer : Procedure to measure selectivity of radio receiver: Throughout the measurement the receiver is kept tuned to desired frequency 950 Khz. Now the generator output frequency is deviated below ... the generator output voltage is adjusted to get a standard 50 miliwatt receiver output power.

Description : Draw and label the circuit diagram of ratio detector 

Answer : Draw and label the circuit diagram of ratio detector  

Description : Draw block diagram of FM receiver and explain the use of limiter circuit.

Answer : Diagram Explanation Amplitude limiter: The function of amplitude limiter is to remove all amplitude variation of FM carrier voltage that may occur due to atmospheric disturbances. Use of amplitude limiter makes the system less noisy.

Description : Draw waveform for standing waves on an open and shorted line. Prove that impedance is inverted at every quarter wavelength interval.

Answer : Waveform- Explanation When the transmission line is short circuited voltage is zero and current is maximum.The variation is according to the wavelength. When the ... The pattern repeats for every half wavelength. Thus impedance is inverted at every quarter wavelength interval.

Description : Define PAM, PWM, and PPM. Draw waveforms.

Answer : Pulse amplitude modulation is defined as a process of varying the amplitude of the carrier pulse in accordance to the modulating signal variations. Pulse width modulation is defined as a ... of varying the position of the carrier pulse, in accordance to the modulating signal variations.

Description : Draw and explain block diagram of electronic communication system.

Answer : Block diagram of electronic communication system. Explanation Transducer: A transducer is usually required to convert the output of a source into an electrical signal that is suitable for ... etc. Output Transducer: The output transducer converts electrical signal in to sound signal.  

Description : Draw and explain PLL as an FM demodulator.

Answer : Explanation:- FM signal which is to be demodulated is applied to input of PLL.VCO output must be identical to input signal if PLL is to remain locked. As PLL is locked, VCO ... error voltage represents the modulating signal. Thus at the error amplifier output we get demodulated FM output.

Description : Draw the circuit diagram of practical diode detector and explain its working. 

Answer : Circuit diagram of practical diode detector:  Explanation- The circuit operates in the following manner- The diode has been reversed so that now the negative envelope is demodulated. Due to this ... to produce AGC voltage. The DC AGC voltage is proportional to the amplitude of AM signal. 

Description : Draw the circuit diagram of limiter and explain its working.

Answer : Circuit diagram of amplitude limiter:- Explanation:- 1. In frequency modulation, the signal amplitude is held constant while the carrier frequency is varied. 2. Any noise that contaminates ... V p-p instead of the alternately driven into saturation and cutoff, it limits the signal amplitude

Description : Draw the TRF receiver block diagram and explain its working. 

Answer : Explanation:- 1. TRF receivers are simple and having high sensitivity. The AM transmission takes place in MW band and SW band. MW frequency range is 540KHz to 1640KHz. 2. ... power level to drive the loudspeaker. 7. The loudspeaker converts electrical signal into original sound information.

Description : Draw the circuit diagram of varactor diode FM modulator and explain its working.

Answer : Varactor diode modulator is the direct method of FM generation wherein the carrier frequency is directly varied by the modulating signal. A varactor diode is a semiconductor diode whose ... the magnitude of frequency change is proportional to the amplitude of the modulating signal voltage.

Description : Draw amplitude modulated waveform in time domain and frequency domain with proper labeling.

Answer : AM in Time domain  AM in frequency domain

Description : Draw circuit diagram of transistor reactance modulator. Explain its working.

Answer : Explanation- A reactance modulator is illustrated in figure. It is basically a standard commonemitter class A amplifier. Resistors R1 and R2 from a voltage divider to bias ... frequency, whereas a lower capacitance increases the frequency. The circuit produces direct frequency modulations.

Description : Define the transmission line? Draw it‟s general equivalent circuit.

Answer : Transmission line: A conductor or conductors designed to carry electricity or an electrical signal over large distances with minimum losses and distortion.  Equivalent circuit:

← Prev Question Next Question →
editChoose topic
...