# Integrating or Dual Slope ADC

304 views    •There are basically 4 types of Analog to Digital converter (ADC).

4.Delta sigma converter

•Dual slope ADC is use for converting analog to digital value.

•This is integrator.

•Dual slope ADC is slow but have high accuracy and have high resistance to noise.

•This method is use in digital multimeter or digital voltmeter.

•It is basically have integrator, comparator, control logic, clock, counter and electronically controlled switches.

•Its operation requires two voltage slopes hence it is name as Dual slope.

•The unknown voltage is applied to Vin and Known but with negative polarity voltage is applied to Vref.

•Vin is for fixed amount of time and Vref is applied for variable amount of time.

•One slope (/) is made due to unknown voltage.

•The negative polarity voltage is then applied until it become zero means second slope (\) will form.

•The comparator is use to detect zero crossing.

•Capacitor charges and discharges linearly with a constant slopes.

•T de-int is more than T int because discharging time of capacitor is more than its charging time.

•If T de-int is large means large voltage and if T de-int is less means less voltage.

•When the switch is at Vin position capacitor charges (charging time of capacitor is less).

•And when the switch is at Vref position capacitor discharges (charging time of capacitor is more).

1. Single slope/Voltage to frequency or integrating type A/D converter

2. Dual slope integrating type A/D converter

Single slope/Voltage to frequency or integrating type A/D converter:

Explanation: An analog voltage can be converted to digital form, by producing pulses whose frequency is proportional to the analog voltage. These pulses are counted by a counter for a fixed duration and the reading of the counter will be proportional to the frequency of the pulses and hence, to the analog voltage. Voltage-to-frequency converter In these types of A/D converters, the voltage is converted (by a voltage-to-frequency converter) into a set of pulses repetition rate (or frequency) is proportional to the magnitude of the input. The pulses are counted by an electronic counter similar to the way the number of wavelengths was counted by the time-interval counter in the ramp-type DVM.

or

Dual slope Integration A/D converter

Explanation: In this ADC, an unknown analog voltage and a known reference voltage are converted into equivalent time periods using an integrator, These time periods are measured by the counter. This circuit is called dual slope ADC because the analog voltage and reference voltage are converted to ramp signals of different slopes by the integrator. The dc voltage to be converted by the dual-slope converter, Vin, is fed to an integrator, which produces a ramp waveform output, The ramp signal starts at zero and creases for a fixed time interval, T1 equal to the maximum count of the multiplied by the clock frequency. An 8-bit counter operating at 1 MHz would there by cause T1 to be 8 µs. The slope of the ramp is proportional to the magnitude of Vin. The end of the interval, T1 the carry-out (CO) bit of the ripple counter causes the switch to move to the - VREF position. In this position, a constant current (- VREFI R) begins to discharge capacitor C. The ripple counter is reset to zero there is a Co. The count continues until the zero crossing detector switches state as result of capacitor C being discharged. The counter is stopped by the zero crossing detector, and the resultant count is proportional to the input voltage. In the following derivation it is important to observe that t, is independent of the value of Rand C.

Operation: At the start of measurement the counter is reset to zero. So output of flip‐flop is zero. This is applied to the switch control. The switch control now connects input voltage (Vin) to integrator. Integrator now starts integrating the input voltage. That means the capacitor starts charging. Because of this the output of integrator changes from zero value. It courses the zero detector (comparator) to change its stage. That means it provided the high signal to the logic gate thus the opening of logic gate takes place.

When the logic get is opened, the number of clock pulses are passed to the counter . the counter will count these pulses for a certain time t1. After this time the counter is reached to 999. After this 1 is passed to the flip‐flop.

The output of flip‐flop is now 1. This is connected to the control logic. The switch control logic is now changes the position of switch from vin to Vref. So integrator will starts integrating this reference voltage (‐Vref). This will causes the capacitor to starts to discharging. The discharging of capacitor will take place for the time period . The discharging path is having a constant negative slope. This slope is shown in figure. A stage will be reached at which output of integrator becomes zero. This stage is obtained at the end of time period t2. At this instant the output of zero detector gets changed. This will causes the closing of logic gate. Now the pulses from clock are not allowed to pass towards the counter. The counting operation is completed. Then the data from counter is passed to the digital readout for display purpose.  ## Related Questions

2,287 views

Description : Compare Dual slope DVM and SAR type DVM.

Last Answer : Sr no Dual slope DVM SAR type DVM 1 It is highly accurate It is moderately accurate 2 Cost is high It is inexpensive 3 Two comparator is used One comparator is used ... resolution Good resolution 5 Slow speed High speed 6 Less Error More error

92 views

Description : Which type of ADC gives high resolution?

Last Answer : Sigma Delta, successive approximation and integrating type analogue to digital converter gives very high resolution but they have slower speed.

80 views

108 views

Last Answer : ADC-Amplifier interface: In most data acquisition system analog to digital converter (ADC) is interfaced with the amplifier. There are different interface architectural schemes. Operational ... . The interaction between analog to digital converter and amplifier affects the system performance.

79 views

Description : Describe the various blocks and their functions in pipelined ADC architecture.

85 views

Description : Why energy meter is integrating type measuring instrument?

Last Answer : Energy Meter is Integrating Type Measuring Instrument: Energy meter is used for measurement of energy, which is obtained by integration (summation) of power supplied over the particular time duration, hence it the integrating type measuring instrument.

102 views

Description : Use Dual Trace Oscilloscope to Determine A.C Voltage and Current Response in Given R, L, C Circuit.

Last Answer : Practical Significance In the industry environment Electrical Engineering Diploma graduate are expected to handle cathode ray oscilloscope (CRO) to measure basic parameters like voltage, frequency, time ... components and emphasize a quantity, lagging or leading with respect to other quantity.

114 views

Description : Flash or Parallel ADC

81 views

Description : Define ADC and DAC. Write two applications of each.

Last Answer : ADC An analog to digital converter (ADC), converts any analog signal into quantifiable data, which makes it easier to process and store, as well as more accurate and reliable by ... signal, hence any analog circuit can work with digital system Application - Microcontroller, washing machine

344 views

Description : The number of comparators required in a 4 bit comparator type ADC is (A) 16 (B) 15 (C) 17 (D) 12

Last Answer : The number of comparators required in a 4 bit comparator type ADC is 15